写了一个白噪声干扰算法的实际应用案例(指读取文件然后随机选列最后在规定位置输出)
This commit is contained in:
40
disturb_data_to_csv.py
Normal file
40
disturb_data_to_csv.py
Normal file
@@ -0,0 +1,40 @@
|
||||
import pandas as pd
|
||||
import random
|
||||
import numpy
|
||||
from white_noise import white_noise
|
||||
import ray
|
||||
|
||||
ray.init()
|
||||
filepath = "E:/Data_sum/ttxd200.csv"
|
||||
origin_data = pd.read_csv(filepath)
|
||||
row_len = origin_data.shape[0]
|
||||
cow_len = origin_data.shape[1]
|
||||
columns_index=origin_data.columns
|
||||
columns_list=columns_index.tolist()
|
||||
|
||||
disturb_data = origin_data
|
||||
real_origin_data = origin_data
|
||||
algorithm_white_noise = white_noise.remote()
|
||||
algorithm_white_noise.set_config.remote('{"WHITE_NOISE_STANDARD_DEVIATION_BASE": 30}')
|
||||
|
||||
#cow_name = "ttxd_12_1"
|
||||
contrast_data = pd.DataFrame()
|
||||
|
||||
|
||||
for i in range(0,row_len-50,10):
|
||||
col_number = random.randint(0,cow_len)
|
||||
cow_name = columns_list[col_number]
|
||||
for j in range(i,i+50):
|
||||
futures = algorithm_white_noise.eval.remote(origin_data.loc[j, cow_name])
|
||||
disturb_data.loc[i, cow_name] = ray.get(futures)
|
||||
contrast_data[cow_name+'_disturb'+str(i)] = disturb_data[cow_name]
|
||||
disturb_data = real_origin_data
|
||||
origin_data = real_origin_data
|
||||
|
||||
# print(columns_list)
|
||||
contrast_data.to_csv("E:/Data_sum/ttxd200_disturb.csv", index=False)
|
||||
contrast_data_only = contrast_data.values
|
||||
# contrast_data_only.to_csv("E:/Data_sum/ttxd200_disturb_data.csv", index=False)
|
||||
print(contrast_data_only)
|
||||
# pd.DataFrame(contrast_data_only).to_csv("E:/Data_sum/ttxd200_disturb_data.csv", index=False)
|
||||
numpy.savetxt("E:/Data_sum/ttxd200_disturb_data.csv", contrast_data_only, delimiter=",")
|
||||
Reference in New Issue
Block a user