diff --git a/.idea/misc.xml b/.idea/misc.xml index d1e22ec..543d87e 100644 --- a/.idea/misc.xml +++ b/.idea/misc.xml @@ -1,4 +1,4 @@ - + \ No newline at end of file diff --git a/.idea/python_project.iml b/.idea/python_project.iml index a027b29..2238bce 100644 --- a/.idea/python_project.iml +++ b/.idea/python_project.iml @@ -2,7 +2,7 @@ - + diff --git a/disturb_data_to_csv.py b/disturb_data_to_csv.py new file mode 100644 index 0000000..2cc8bb2 --- /dev/null +++ b/disturb_data_to_csv.py @@ -0,0 +1,40 @@ +import pandas as pd +import random +import numpy +from white_noise import white_noise +import ray + +ray.init() +filepath = "E:/Data_sum/ttxd200.csv" +origin_data = pd.read_csv(filepath) +row_len = origin_data.shape[0] +cow_len = origin_data.shape[1] +columns_index=origin_data.columns +columns_list=columns_index.tolist() + +disturb_data = origin_data +real_origin_data = origin_data +algorithm_white_noise = white_noise.remote() +algorithm_white_noise.set_config.remote('{"WHITE_NOISE_STANDARD_DEVIATION_BASE": 30}') + +#cow_name = "ttxd_12_1" +contrast_data = pd.DataFrame() + + +for i in range(0,row_len-50,10): + col_number = random.randint(0,cow_len) + cow_name = columns_list[col_number] + for j in range(i,i+50): + futures = algorithm_white_noise.eval.remote(origin_data.loc[j, cow_name]) + disturb_data.loc[i, cow_name] = ray.get(futures) + contrast_data[cow_name+'_disturb'+str(i)] = disturb_data[cow_name] + disturb_data = real_origin_data + origin_data = real_origin_data + +# print(columns_list) +contrast_data.to_csv("E:/Data_sum/ttxd200_disturb.csv", index=False) +contrast_data_only = contrast_data.values +# contrast_data_only.to_csv("E:/Data_sum/ttxd200_disturb_data.csv", index=False) +print(contrast_data_only) +# pd.DataFrame(contrast_data_only).to_csv("E:/Data_sum/ttxd200_disturb_data.csv", index=False) +numpy.savetxt("E:/Data_sum/ttxd200_disturb_data.csv", contrast_data_only, delimiter=",") \ No newline at end of file