diff --git a/.idea/misc.xml b/.idea/misc.xml
index d1e22ec..543d87e 100644
--- a/.idea/misc.xml
+++ b/.idea/misc.xml
@@ -1,4 +1,4 @@
-
+
\ No newline at end of file
diff --git a/.idea/python_project.iml b/.idea/python_project.iml
index a027b29..2238bce 100644
--- a/.idea/python_project.iml
+++ b/.idea/python_project.iml
@@ -2,7 +2,7 @@
-
+
diff --git a/disturb_data_to_csv.py b/disturb_data_to_csv.py
new file mode 100644
index 0000000..2cc8bb2
--- /dev/null
+++ b/disturb_data_to_csv.py
@@ -0,0 +1,40 @@
+import pandas as pd
+import random
+import numpy
+from white_noise import white_noise
+import ray
+
+ray.init()
+filepath = "E:/Data_sum/ttxd200.csv"
+origin_data = pd.read_csv(filepath)
+row_len = origin_data.shape[0]
+cow_len = origin_data.shape[1]
+columns_index=origin_data.columns
+columns_list=columns_index.tolist()
+
+disturb_data = origin_data
+real_origin_data = origin_data
+algorithm_white_noise = white_noise.remote()
+algorithm_white_noise.set_config.remote('{"WHITE_NOISE_STANDARD_DEVIATION_BASE": 30}')
+
+#cow_name = "ttxd_12_1"
+contrast_data = pd.DataFrame()
+
+
+for i in range(0,row_len-50,10):
+ col_number = random.randint(0,cow_len)
+ cow_name = columns_list[col_number]
+ for j in range(i,i+50):
+ futures = algorithm_white_noise.eval.remote(origin_data.loc[j, cow_name])
+ disturb_data.loc[i, cow_name] = ray.get(futures)
+ contrast_data[cow_name+'_disturb'+str(i)] = disturb_data[cow_name]
+ disturb_data = real_origin_data
+ origin_data = real_origin_data
+
+# print(columns_list)
+contrast_data.to_csv("E:/Data_sum/ttxd200_disturb.csv", index=False)
+contrast_data_only = contrast_data.values
+# contrast_data_only.to_csv("E:/Data_sum/ttxd200_disturb_data.csv", index=False)
+print(contrast_data_only)
+# pd.DataFrame(contrast_data_only).to_csv("E:/Data_sum/ttxd200_disturb_data.csv", index=False)
+numpy.savetxt("E:/Data_sum/ttxd200_disturb_data.csv", contrast_data_only, delimiter=",")
\ No newline at end of file