mirror of
https://github.com/lana-k/sqliteviz.git
synced 2025-12-06 18:18:53 +08:00
* Update base Docker images * Use performance.now() instead of Date.now() for time promise tests * Build sqlitelua: user scalar, aggregate & table-valued functions in Lua
218 lines
6.1 KiB
Plaintext
218 lines
6.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"import json\n",
|
|
"from pathlib import Path\n",
|
|
"\n",
|
|
"import pandas\n",
|
|
"from IPython.display import display, IFrame, Markdown\n",
|
|
"from plotly import express"
|
|
],
|
|
"outputs": [],
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"outputHidden": false,
|
|
"inputHidden": true
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"render_format = 'svg'\n",
|
|
"benchmark_path = Path()\n",
|
|
"df_dict = {}\n",
|
|
"stat_dict = {}\n",
|
|
"for p in benchmark_path.glob('build-*-result.json'):\n",
|
|
" build_name = p.stem.split('-', 2)[1]\n",
|
|
" for browser_data in json.loads(p.read_text()):\n",
|
|
" browser_name = f'{browser_data[\"browser\"][\"name\"]} {browser_data[\"browser\"][\"major\"]}'\n",
|
|
" browser_name = browser_name.lower().replace('chrome headless', 'chromium')\n",
|
|
" for result in (r for i, r in browser_data['result'].items() if i.isdigit()):\n",
|
|
" key = build_name, browser_name, result['name']\n",
|
|
" df_dict[key] = result['stats']['sample']\n",
|
|
" stat_dict[key] = result['stats']\n",
|
|
"\n",
|
|
"min_sample_size = min(len(v) for v in df_dict.values())\n",
|
|
"df_dict = {k: v[:min_sample_size] for k, v in df_dict.items()}\n",
|
|
" \n",
|
|
"wide_df = pandas.DataFrame(df_dict).reset_index()\n",
|
|
"df = pandas.melt(\n",
|
|
" wide_df, \n",
|
|
" id_vars='index', \n",
|
|
" var_name=['build', 'browser', 'test'], \n",
|
|
" value_name='duration',\n",
|
|
")\n",
|
|
"df = df.rename(columns={'index': 'run'})\n",
|
|
"df.sort_values(['build', 'run'], inplace=True)"
|
|
],
|
|
"outputs": [],
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"inputHidden": true,
|
|
"outputExpanded": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# sql.js build comparison\n",
|
|
"\n",
|
|
"<style>\n",
|
|
"@page {\n",
|
|
" size: 215mm 297mm;\n",
|
|
" margin: 0;\n",
|
|
"}\n",
|
|
"</style>"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"!du -b lib | head -n 2"
|
|
],
|
|
"outputs": [],
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"outputHidden": false,
|
|
"inputHidden": true
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"stat_df = pandas.DataFrame(stat_dict)\n",
|
|
"stat_df = stat_df.loc[['mean', 'rme']].transpose()\n",
|
|
"stat_df.index = stat_df.index.set_names(['build', 'browser', 'test'])\n",
|
|
"stat_df = stat_df.reset_index().sort_values(['test', 'browser'], ascending=False)\n",
|
|
"for index, row in stat_df.iterrows():\n",
|
|
" print('\\t'.join([\n",
|
|
" row['build'],\n",
|
|
" row['browser'],\n",
|
|
" row['test'],\n",
|
|
" f'{row[\"mean\"]:.2f} s ± {row[\"rme\"]:.1f}%'\n",
|
|
" ]))"
|
|
],
|
|
"outputs": [],
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"inputHidden": true,
|
|
"outputExpanded": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"fig = express.box(df, x='browser', y='duration', points='all', color='build', facet_row='test')\n",
|
|
"fig.update_yaxes(matches=None)\n",
|
|
"fig.show(render_format)"
|
|
],
|
|
"outputs": [],
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"inputHidden": true,
|
|
"outputExpanded": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"fig = express.line(\n",
|
|
" df, x='run', y='duration', color='build', facet_col='browser', facet_row='test'\n",
|
|
")\n",
|
|
"fig.update_yaxes(matches=None)\n",
|
|
"fig.show(render_format)"
|
|
],
|
|
"outputs": [],
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"inputHidden": true,
|
|
"outputExpanded": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"plot_df = df.groupby(['browser', 'build', 'test'])['duration'].mean().reset_index()\n",
|
|
"plot_df['pct'] = (\n",
|
|
" plot_df\n",
|
|
" .groupby(['browser', 'test'])['duration']\n",
|
|
" .pct_change()\n",
|
|
" .fillna('')\n",
|
|
" .map(lambda v: '{:.2%}'.format(v) if v else v)\n",
|
|
")\n",
|
|
"fig = express.bar(\n",
|
|
" plot_df, \n",
|
|
" x='browser', \n",
|
|
" y='duration', \n",
|
|
" color='build', \n",
|
|
" text='pct', \n",
|
|
" barmode='overlay', \n",
|
|
" facet_row='test',\n",
|
|
")\n",
|
|
"fig.update_yaxes(matches=None)\n",
|
|
"fig.show(render_format)"
|
|
],
|
|
"outputs": [],
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"inputHidden": true,
|
|
"outputExpanded": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"for p in sorted(benchmark_path.glob('build-*.svg')):\n",
|
|
" display(Markdown(p.stem))\n",
|
|
" display(IFrame(p, 640, 480))"
|
|
],
|
|
"outputs": [],
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"outputHidden": false,
|
|
"inputHidden": true,
|
|
"outputExpanded": false
|
|
}
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"name": "stats",
|
|
"language": "python",
|
|
"display_name": "Stats (Python 3.10)"
|
|
},
|
|
"language_info": {
|
|
"name": "python",
|
|
"version": "3.10.14",
|
|
"mimetype": "text/x-python",
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"pygments_lexer": "ipython3",
|
|
"nbconvert_exporter": "python",
|
|
"file_extension": ".py"
|
|
},
|
|
"widgets": {
|
|
"application/vnd.jupyter.widget-state+json": {
|
|
"state": {},
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
}
|
|
},
|
|
"kernel_info": {
|
|
"name": "stats"
|
|
},
|
|
"nteract": {
|
|
"version": "0.14.5"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
} |