1
0
mirror of https://github.com/lana-k/sqliteviz.git synced 2025-12-07 02:28:54 +08:00
Files
sqliteviz/lib/sql-js/benchmark/result-analysis.ipynb
saaj 3f6427ff0e Build sqlitelua for scalar, aggregate & table-valued UDFs in Lua (#118)
* Update base Docker images

* Use performance.now() instead of Date.now() for time promise tests

* Build sqlitelua: user scalar, aggregate & table-valued functions in Lua
2024-08-25 21:03:34 +02:00

218 lines
6.1 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"source": [
"import json\n",
"from pathlib import Path\n",
"\n",
"import pandas\n",
"from IPython.display import display, IFrame, Markdown\n",
"from plotly import express"
],
"outputs": [],
"execution_count": null,
"metadata": {
"collapsed": false,
"outputHidden": false,
"inputHidden": true
}
},
{
"cell_type": "code",
"source": [
"render_format = 'svg'\n",
"benchmark_path = Path()\n",
"df_dict = {}\n",
"stat_dict = {}\n",
"for p in benchmark_path.glob('build-*-result.json'):\n",
" build_name = p.stem.split('-', 2)[1]\n",
" for browser_data in json.loads(p.read_text()):\n",
" browser_name = f'{browser_data[\"browser\"][\"name\"]} {browser_data[\"browser\"][\"major\"]}'\n",
" browser_name = browser_name.lower().replace('chrome headless', 'chromium')\n",
" for result in (r for i, r in browser_data['result'].items() if i.isdigit()):\n",
" key = build_name, browser_name, result['name']\n",
" df_dict[key] = result['stats']['sample']\n",
" stat_dict[key] = result['stats']\n",
"\n",
"min_sample_size = min(len(v) for v in df_dict.values())\n",
"df_dict = {k: v[:min_sample_size] for k, v in df_dict.items()}\n",
" \n",
"wide_df = pandas.DataFrame(df_dict).reset_index()\n",
"df = pandas.melt(\n",
" wide_df, \n",
" id_vars='index', \n",
" var_name=['build', 'browser', 'test'], \n",
" value_name='duration',\n",
")\n",
"df = df.rename(columns={'index': 'run'})\n",
"df.sort_values(['build', 'run'], inplace=True)"
],
"outputs": [],
"execution_count": null,
"metadata": {
"inputHidden": true,
"outputExpanded": false
}
},
{
"cell_type": "markdown",
"source": [
"# sql.js build comparison\n",
"\n",
"<style>\n",
"@page {\n",
" size: 215mm 297mm;\n",
" margin: 0;\n",
"}\n",
"</style>"
],
"metadata": {}
},
{
"cell_type": "code",
"source": [
"!du -b lib | head -n 2"
],
"outputs": [],
"execution_count": null,
"metadata": {
"collapsed": false,
"outputHidden": false,
"inputHidden": true
}
},
{
"cell_type": "code",
"source": [
"stat_df = pandas.DataFrame(stat_dict)\n",
"stat_df = stat_df.loc[['mean', 'rme']].transpose()\n",
"stat_df.index = stat_df.index.set_names(['build', 'browser', 'test'])\n",
"stat_df = stat_df.reset_index().sort_values(['test', 'browser'], ascending=False)\n",
"for index, row in stat_df.iterrows():\n",
" print('\\t'.join([\n",
" row['build'],\n",
" row['browser'],\n",
" row['test'],\n",
" f'{row[\"mean\"]:.2f} s ± {row[\"rme\"]:.1f}%'\n",
" ]))"
],
"outputs": [],
"execution_count": null,
"metadata": {
"inputHidden": true,
"outputExpanded": false
}
},
{
"cell_type": "code",
"source": [
"fig = express.box(df, x='browser', y='duration', points='all', color='build', facet_row='test')\n",
"fig.update_yaxes(matches=None)\n",
"fig.show(render_format)"
],
"outputs": [],
"execution_count": null,
"metadata": {
"inputHidden": true,
"outputExpanded": false
}
},
{
"cell_type": "code",
"source": [
"fig = express.line(\n",
" df, x='run', y='duration', color='build', facet_col='browser', facet_row='test'\n",
")\n",
"fig.update_yaxes(matches=None)\n",
"fig.show(render_format)"
],
"outputs": [],
"execution_count": null,
"metadata": {
"inputHidden": true,
"outputExpanded": false
}
},
{
"cell_type": "code",
"source": [
"plot_df = df.groupby(['browser', 'build', 'test'])['duration'].mean().reset_index()\n",
"plot_df['pct'] = (\n",
" plot_df\n",
" .groupby(['browser', 'test'])['duration']\n",
" .pct_change()\n",
" .fillna('')\n",
" .map(lambda v: '{:.2%}'.format(v) if v else v)\n",
")\n",
"fig = express.bar(\n",
" plot_df, \n",
" x='browser', \n",
" y='duration', \n",
" color='build', \n",
" text='pct', \n",
" barmode='overlay', \n",
" facet_row='test',\n",
")\n",
"fig.update_yaxes(matches=None)\n",
"fig.show(render_format)"
],
"outputs": [],
"execution_count": null,
"metadata": {
"inputHidden": true,
"outputExpanded": false
}
},
{
"cell_type": "code",
"source": [
"for p in sorted(benchmark_path.glob('build-*.svg')):\n",
" display(Markdown(p.stem))\n",
" display(IFrame(p, 640, 480))"
],
"outputs": [],
"execution_count": null,
"metadata": {
"collapsed": false,
"outputHidden": false,
"inputHidden": true,
"outputExpanded": false
}
}
],
"metadata": {
"kernelspec": {
"name": "stats",
"language": "python",
"display_name": "Stats (Python 3.10)"
},
"language_info": {
"name": "python",
"version": "3.10.14",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
},
"kernel_info": {
"name": "stats"
},
"nteract": {
"version": "0.14.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}