{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "2e7d8525", "metadata": {}, "outputs": [], "source": [ "import json\n", "from pathlib import Path\n", "\n", "import pandas\n", "import plotly.express as px" ] }, { "cell_type": "code", "execution_count": 2, "id": "0f420fe2", "metadata": {}, "outputs": [], "source": [ "benchmark_path = Path('/path/to/sqliteviz/project/sqliteviz/lib/sql-js/benchmark')" ] }, { "cell_type": "code", "execution_count": 3, "id": "b7d79c6c", "metadata": {}, "outputs": [], "source": [ "df_dict = {}\n", "stat_dict = {}\n", "for p in benchmark_path.glob('build-*-result.json'):\n", " build_name = p.stem.split('-', 2)[1]\n", " for browser_data in json.loads(p.read_text()):\n", " browser_name = f'{browser_data[\"browser\"][\"name\"]} {browser_data[\"browser\"][\"major\"]}'\n", " browser_name = browser_name.lower().replace('chrome headless', 'chromium')\n", " for result in (r for i, r in browser_data['result'].items() if i.isdigit()):\n", " key = build_name, browser_name, result['name']\n", " df_dict[key] = result['stats']['sample']\n", " stat_dict[key] = result['stats']\n", "\n", "min_sample_size = min(len(v) for v in df_dict.values())\n", "df_dict = {k: v[:min_sample_size] for k, v in df_dict.items()}\n", " \n", "wide_df = pandas.DataFrame(df_dict).reset_index()\n", "df = pandas.melt(\n", " wide_df, \n", " id_vars='index', \n", " var_name=['build', 'browser', 'test'], \n", " value_name='duration',\n", ")\n", "df.sort_values(['build', 'index'], inplace=True)" ] }, { "cell_type": "code", "execution_count": 4, "id": "bc655c11", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "pr\tfirefox 88\tselect\t0.20 s ± 1.5%\n", "master\tfirefox 88\tselect\t0.22 s ± 1.3%\n", "pr\tchromium 90\tselect\t0.18 s ± 1.1%\n", "master\tchromium 90\tselect\t0.18 s ± 0.5%\n", "pr\tfirefox 88\timport\t2.37 s ± 4.3%\n", "master\tfirefox 88\timport\t2.64 s ± 2.6%\n", "pr\tchromium 90\timport\t1.67 s ± 0.7%\n", "master\tchromium 90\timport\t1.74 s ± 1.8%\n" ] } ], "source": [ "stat_df = pandas.DataFrame(stat_dict)\n", "stat_df = stat_df.loc[['mean', 'rme']].transpose()\n", "stat_df.index = stat_df.index.set_names(['build', 'browser', 'test'])\n", "stat_df = stat_df.reset_index().sort_values(['test', 'browser'], ascending=False)\n", "for index, row in stat_df.iterrows():\n", " print('\\t'.join([\n", " row['build'],\n", " row['browser'],\n", " row['test'],\n", " f'{row[\"mean\"]:.2f} s ± {row[\"rme\"]:.1f}%'\n", " ]))" ] }, { "cell_type": "code", "execution_count": 5, "id": "5a3ab654", "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "chromium 90firefox 880.180.20.220.240.261.522.53buildmasterprbrowserdurationdurationtest=selecttest=import" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = px.box(df, x='browser', y='duration', points='all', color='build', facet_row='test')\n", "fig.update_yaxes(matches=None)\n", "fig.show('svg')" ] }, { "cell_type": "code", "execution_count": 6, "id": "1619018c", "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "0102030400.180.20.220102030401.61.822.2buildmasterprindexindexdurationdurationbrowser=chromium 90browser=firefox 88test=selecttest=import" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = px.line(\n", " df, x='index', y='duration', color='build', facet_col='browser', facet_row='test'\n", ")\n", "fig.update_yaxes(matches=None)\n", "fig.show('svg')" ] }, { "cell_type": "code", "execution_count": 7, "id": "397b848c", "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "-2.43%-8.26%chromium 90firefox 8800.050.10.150.2-3.88%-10.15%012buildmasterprbrowserdurationdurationtest=selecttest=import" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_df = df.groupby(['browser', 'build', 'test'])['duration'].mean().reset_index()\n", "plot_df['pct'] = (\n", " plot_df\n", " .groupby(['browser', 'test'])['duration']\n", " .pct_change()\n", " .fillna('')\n", " .map(lambda v: '{:.2%}'.format(v) if v else v)\n", ")\n", "fig = px.bar(\n", " plot_df, \n", " x='browser', \n", " y='duration', \n", " color='build', \n", " text='pct', \n", " barmode='overlay', \n", " facet_row='test',\n", ")\n", "fig.update_yaxes(matches=None)\n", "fig.show('svg')" ] } ], "metadata": { "kernelspec": { "display_name": "Stats Python 3", "language": "python", "name": "stats" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }