31 lines
1.0 KiB
Python
31 lines
1.0 KiB
Python
import pandas as pd
|
|
from variance_x import variance_x
|
|
import ray
|
|
|
|
ray.init()
|
|
|
|
RAY_DISABLE_MEMORY_MONITOR=1
|
|
filepath = "D:/python_project_data/1.csv"
|
|
origin_data = pd.read_csv(filepath)
|
|
row_len = origin_data.shape[0]
|
|
cow_len = origin_data.shape[1]
|
|
variance_data = origin_data
|
|
algorithm_variance_x = variance_x.remote()
|
|
|
|
cow_name = "G1.TTXD1_3"
|
|
contrast_data = pd.DataFrame()
|
|
contrast_data[cow_name+'_origin'] = origin_data[cow_name]
|
|
algorithm_variance_x.set_config.remote('{"WINDOW_LENGTH": 5 }')
|
|
# algorithm_step.set_config('{"CYCLE_TIME_BASE": 5 }')
|
|
for i in range(0,row_len):
|
|
futures=algorithm_variance_x.eval.remote(origin_data.loc[i,cow_name])
|
|
variance_data.loc[i, cow_name]=ray.get(futures)
|
|
|
|
print(variance_data.loc[:, cow_name])
|
|
contrast_data[cow_name+'_variance_x'] = variance_data[cow_name]
|
|
# average_data.to_csv("D:/python_project_data/1_disturb.csv", index=False)
|
|
contrast_data.to_csv("D:/python_project_data/variance_data_x.csv", index=False)
|
|
|
|
|
|
# 以下均为测试性能用
|
|
# print(algorithm_step.config_) |