import pandas as pd import random import numpy from white_noise import white_noise import ray ray.init() filepath = "E:/Data_sum/ttxd200.csv" origin_data = pd.read_csv(filepath) row_len = origin_data.shape[0] cow_len = origin_data.shape[1] columns_index=origin_data.columns columns_list=columns_index.tolist() disturb_data = origin_data real_origin_data = origin_data algorithm_white_noise = white_noise.remote() algorithm_white_noise.set_config.remote('{"WHITE_NOISE_STANDARD_DEVIATION_BASE": 30}') #cow_name = "ttxd_12_1" contrast_data = pd.DataFrame() for i in range(0,row_len-50,10): col_number = random.randint(0,cow_len) cow_name = columns_list[col_number] for j in range(i,i+50): futures = algorithm_white_noise.eval.remote(origin_data.loc[j, cow_name]) disturb_data.loc[i, cow_name] = ray.get(futures) contrast_data[cow_name+'_disturb'+str(i)] = disturb_data[cow_name] disturb_data = real_origin_data origin_data = real_origin_data # print(columns_list) contrast_data.to_csv("E:/Data_sum/ttxd200_disturb.csv", index=False) contrast_data_only = contrast_data.values # contrast_data_only.to_csv("E:/Data_sum/ttxd200_disturb_data.csv", index=False) print(contrast_data_only) # pd.DataFrame(contrast_data_only).to_csv("E:/Data_sum/ttxd200_disturb_data.csv", index=False) numpy.savetxt("E:/Data_sum/ttxd200_disturb_data.csv", contrast_data_only, delimiter=",")