import pandas as pd from variance_x import variance_x import ray ray.init() RAY_DISABLE_MEMORY_MONITOR=1 filepath = "D:/python_project_data/1.csv" origin_data = pd.read_csv(filepath) row_len = origin_data.shape[0] cow_len = origin_data.shape[1] variance_data = origin_data algorithm_variance_x = variance_x.remote() cow_name = "G1.TTXD1_3" contrast_data = pd.DataFrame() contrast_data[cow_name+'_origin'] = origin_data[cow_name] algorithm_variance_x.set_config.remote('{"WINDOW_LENGTH": 5 }') # algorithm_step.set_config('{"CYCLE_TIME_BASE": 5 }') for i in range(0,row_len): futures=algorithm_variance_x.eval.remote(origin_data.loc[i,cow_name]) variance_data.loc[i, cow_name]=ray.get(futures) print(variance_data.loc[:, cow_name]) contrast_data[cow_name+'_variance_x'] = variance_data[cow_name] # average_data.to_csv("D:/python_project_data/1_disturb.csv", index=False) contrast_data.to_csv("D:/python_project_data/variance_data_x.csv", index=False) # 以下均为测试性能用 # print(algorithm_step.config_)