Compare commits

..

2 Commits

Author SHA1 Message Date
8c3d752e13 Changes:方差计算代码与测试 2022-05-25 16:46:34 +08:00
48334d9381 Changes:方差计算 2022-05-24 16:58:52 +08:00
2 changed files with 82 additions and 0 deletions

51
variance.py Normal file
View File

@@ -0,0 +1,51 @@
from algorithm import algorithm
import json
import ray
@ray.remote
class variance(algorithm):
def __init__(self):
self.config_dict_ = None
self.config_ = None
self.variance_number_ = 10
self.present_number_ = 0
self.window_1_ = []
self.sum = 0
self.average = 0
self.variance = 0
self.variance_sum = 0
def set_config(self, config):
self.config_ = config
self.config_dict_ = json.loads(self.config_)
self.variance_number_ = self.config_dict_["VARIANCE_NUMBER"]
def config(self):
return self.config_
def eval(self, value):
self.present_number_ = len(self.window_1_)
if self.present_number_ < self.variance_number_:
self.window_1_.append(value)
self.sum = 0
for i in self.window_1_:
self.sum = self.sum + i
self.average = self.sum / len(self.window_1_)
self.variance_sum = 0
for i in self.window_1_:
self.variance_sum = self.variance_sum + (i-self.average)*(i-self.average)
self.variance = self.variance_sum / len(self.window_1_)
return self.variance
else:
self.sum = 0
del self.window_1_[0]
self.window_1_.append(value)
for i in self.window_1_:
self.sum = self.sum + i
self.average = self.sum / len(self.window_1_)
self.variance_sum = 0
for i in self.window_1_:
self.variance_sum = self.variance_sum + (i-self.average)*(i-self.average)
self.variance = self.variance_sum / len(self.window_1_)
return self.variance

31
variance_test_csv.py Normal file
View File

@@ -0,0 +1,31 @@
import pandas as pd
from variance import variance
import ray
ray.init()
ray.RAY_DISABLE_MEMORY_MONITOR=1
filepath = "D:/python_project_data/1.csv"
origin_data = pd.read_csv(filepath)
row_len = origin_data.shape[0]
cow_len = origin_data.shape[1]
variance_data = origin_data
algorithm_variance = variance.remote()
cow_name = "G1.TTXD1_3"
contrast_data = pd.DataFrame()
contrast_data[cow_name+'_origin'] = origin_data[cow_name]
algorithm_variance.set_config.remote('{"VARIANCE_NUMBER": 5 }')
# algorithm_step.set_config('{"CYCLE_TIME_BASE": 5 }')
for i in range(0,row_len):
futures=algorithm_variance.eval.remote(origin_data.loc[i,cow_name])
variance_data.loc[i, cow_name]=ray.get(futures)
print(variance_data.loc[:, cow_name])
contrast_data[cow_name+'_variance'] = variance_data[cow_name]
# average_data.to_csv("D:/python_project_data/1_disturb.csv", index=False)
contrast_data.to_csv("D:/python_project_data/variance_data.csv", index=False)
# 以下均为测试性能用
# print(algorithm_step.config_)