Compare commits
11 Commits
8c1fc2af7e
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
| d65c262d1e | |||
| 24f84a392e | |||
| 638bfb3156 | |||
| ecb44f84f4 | |||
| 61dcd34d09 | |||
| cbf24656f9 | |||
| 8c3d752e13 | |||
| 48334d9381 | |||
| ffbccc94b9 | |||
| 20bcd73cac | |||
| 79bc30ea79 |
2
.idea/misc.xml
generated
2
.idea/misc.xml
generated
@@ -1,4 +1,4 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8" project-jdk-type="Python SDK" />
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8 (python_vitual_3.85)" project-jdk-type="Python SDK" />
|
||||
</project>
|
||||
2
.idea/python_project.iml
generated
2
.idea/python_project.iml
generated
@@ -2,7 +2,7 @@
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="inheritedJdk" />
|
||||
<orderEntry type="jdk" jdkName="Python 3.8 (python_vitual_3.85)" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
<component name="PyDocumentationSettings">
|
||||
|
||||
21
average.py
21
average.py
@@ -3,14 +3,16 @@ import json
|
||||
import ray
|
||||
|
||||
@ray.remote
|
||||
class step(algorithm):
|
||||
class average(algorithm):
|
||||
def __init__(self):
|
||||
self.config_dict_ = None
|
||||
self.config_ = None
|
||||
self.average_number_ = 10
|
||||
self.present_number_ = 0
|
||||
self.window_1_ = []
|
||||
self.window_2_ = []
|
||||
self.sum = 0
|
||||
self.average = 0
|
||||
|
||||
|
||||
def set_config(self, config):
|
||||
self.config_ = config
|
||||
@@ -24,7 +26,16 @@ class step(algorithm):
|
||||
self.present_number_ = len(self.window_1_)
|
||||
if self.present_number_ < self.average_number_:
|
||||
self.window_1_.append(value)
|
||||
self.window_2_.append(value)
|
||||
return
|
||||
self.sum = 0
|
||||
for i in self.window_1_:
|
||||
self.sum = self.sum + i
|
||||
self.average = self.sum / len(self.window_1_)
|
||||
return self.average
|
||||
else:
|
||||
return value * self.amplitude_base_
|
||||
self.sum = 0
|
||||
del self.window_1_[0]
|
||||
self.window_1_.append(value)
|
||||
for i in self.window_1_:
|
||||
self.sum = self.sum + i
|
||||
self.average = self.sum / len(self.window_1_)
|
||||
return self.average
|
||||
|
||||
31
average_test_csv.py
Normal file
31
average_test_csv.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import pandas as pd
|
||||
from average import average
|
||||
import ray
|
||||
|
||||
ray.init()
|
||||
|
||||
ray.RAY_DISABLE_MEMORY_MONITOR=1
|
||||
filepath = "D:/python_project_data/1.csv"
|
||||
origin_data = pd.read_csv(filepath)
|
||||
row_len = origin_data.shape[0]
|
||||
cow_len = origin_data.shape[1]
|
||||
average_data = origin_data
|
||||
algorithm_average = average.remote()
|
||||
|
||||
cow_name = "G1.TTXD1_3"
|
||||
contrast_data = pd.DataFrame()
|
||||
contrast_data[cow_name+'_origin'] = origin_data[cow_name]
|
||||
algorithm_average.set_config.remote('{"AVERAGE_NUMBER": 5 }')
|
||||
# algorithm_step.set_config('{"CYCLE_TIME_BASE": 5 }')
|
||||
for i in range(0,row_len):
|
||||
futures=algorithm_average.eval.remote(origin_data.loc[i,cow_name])
|
||||
average_data.loc[i, cow_name]=ray.get(futures)
|
||||
|
||||
print(average_data.loc[:, cow_name])
|
||||
contrast_data[cow_name+'_average'] = average_data[cow_name]
|
||||
# average_data.to_csv("D:/python_project_data/1_disturb.csv", index=False)
|
||||
contrast_data.to_csv("D:/python_project_data/average_data.csv", index=False)
|
||||
|
||||
|
||||
# 以下均为测试性能用
|
||||
# print(algorithm_step.config_)
|
||||
29
average_x.py
Normal file
29
average_x.py
Normal file
@@ -0,0 +1,29 @@
|
||||
from algorithm import algorithm
|
||||
import json
|
||||
import ray
|
||||
|
||||
@ray.remote
|
||||
class average_x(algorithm):
|
||||
def __init__(self):
|
||||
self.config_dict_ = None
|
||||
self.config_ = None
|
||||
self.average_number_ = 10
|
||||
self.present_number_ = 0
|
||||
self.avg_ = 0
|
||||
|
||||
def set_config(self, config):
|
||||
self.config_ = config
|
||||
self.config_dict_ = json.loads(self.config_)
|
||||
self.average_number_ = self.config_dict_["AVERAGE_NUMBER"]
|
||||
self.init_flag_ = False
|
||||
|
||||
def config(self):
|
||||
return self.config_
|
||||
|
||||
def eval(self, value):
|
||||
if self.init_flag_ == False:
|
||||
self.init_flag_ = True
|
||||
self.avg_ = value
|
||||
else:
|
||||
self.avg_ = self.avg_ * (self.average_number_ - 1)/self.average_number_ + value / self.average_number_
|
||||
return self.avg_
|
||||
31
average_x_test_csv.py
Normal file
31
average_x_test_csv.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import pandas as pd
|
||||
from average_x import average_x
|
||||
import ray
|
||||
|
||||
ray.init()
|
||||
|
||||
ray.RAY_DISABLE_MEMORY_MONITOR=1
|
||||
filepath = "D:/python_project_data/1.csv"
|
||||
origin_data = pd.read_csv(filepath)
|
||||
row_len = origin_data.shape[0]
|
||||
cow_len = origin_data.shape[1]
|
||||
average_data = origin_data
|
||||
algorithm_average = average_x.remote()
|
||||
|
||||
cow_name = "G1.TTXD1_3"
|
||||
contrast_data = pd.DataFrame()
|
||||
contrast_data[cow_name+'_origin'] = origin_data[cow_name]
|
||||
algorithm_average.set_config.remote('{"AVERAGE_NUMBER": 5 }')
|
||||
# algorithm_step.set_config('{"CYCLE_TIME_BASE": 5 }')
|
||||
for i in range(0,row_len):
|
||||
futures=algorithm_average.eval.remote(origin_data.loc[i,cow_name])
|
||||
average_data.loc[i, cow_name]=ray.get(futures)
|
||||
|
||||
print(average_data.loc[:, cow_name])
|
||||
contrast_data[cow_name+'_average_x'] = average_data[cow_name]
|
||||
# average_data.to_csv("D:/python_project_data/1_disturb.csv", index=False)
|
||||
contrast_data.to_csv("D:/python_project_data/average_x_data.csv", index=False)
|
||||
|
||||
|
||||
# 以下均为测试性能用
|
||||
# print(algorithm_step.config_)
|
||||
40
disturb_data_to_csv.py
Normal file
40
disturb_data_to_csv.py
Normal file
@@ -0,0 +1,40 @@
|
||||
import pandas as pd
|
||||
import random
|
||||
import numpy
|
||||
from white_noise import white_noise
|
||||
import ray
|
||||
|
||||
ray.init()
|
||||
filepath = "E:/Data_sum/ttxd200.csv"
|
||||
origin_data = pd.read_csv(filepath)
|
||||
row_len = origin_data.shape[0]
|
||||
cow_len = origin_data.shape[1]
|
||||
columns_index=origin_data.columns
|
||||
columns_list=columns_index.tolist()
|
||||
|
||||
disturb_data = origin_data
|
||||
real_origin_data = origin_data
|
||||
algorithm_white_noise = white_noise.remote()
|
||||
algorithm_white_noise.set_config.remote('{"WHITE_NOISE_STANDARD_DEVIATION_BASE": 30}')
|
||||
|
||||
#cow_name = "ttxd_12_1"
|
||||
contrast_data = pd.DataFrame()
|
||||
|
||||
|
||||
for i in range(0,row_len-50,10):
|
||||
col_number = random.randint(0,cow_len)
|
||||
cow_name = columns_list[col_number]
|
||||
for j in range(i,i+50):
|
||||
futures = algorithm_white_noise.eval.remote(origin_data.loc[j, cow_name])
|
||||
disturb_data.loc[i, cow_name] = ray.get(futures)
|
||||
contrast_data[cow_name+'_disturb'+str(i)] = disturb_data[cow_name]
|
||||
disturb_data = real_origin_data
|
||||
origin_data = real_origin_data
|
||||
|
||||
# print(columns_list)
|
||||
contrast_data.to_csv("E:/Data_sum/ttxd200_disturb.csv", index=False)
|
||||
contrast_data_only = contrast_data.values
|
||||
# contrast_data_only.to_csv("E:/Data_sum/ttxd200_disturb_data.csv", index=False)
|
||||
print(contrast_data_only)
|
||||
# pd.DataFrame(contrast_data_only).to_csv("E:/Data_sum/ttxd200_disturb_data.csv", index=False)
|
||||
numpy.savetxt("E:/Data_sum/ttxd200_disturb_data.csv", contrast_data_only, delimiter=",")
|
||||
51
variance.py
Normal file
51
variance.py
Normal file
@@ -0,0 +1,51 @@
|
||||
from algorithm import algorithm
|
||||
import json
|
||||
import ray
|
||||
|
||||
@ray.remote
|
||||
class variance(algorithm):
|
||||
def __init__(self):
|
||||
self.config_dict_ = None
|
||||
self.config_ = None
|
||||
self.variance_number_ = 10
|
||||
self.present_number_ = 0
|
||||
self.window_1_ = []
|
||||
self.sum = 0
|
||||
self.average = 0
|
||||
self.variance = 0
|
||||
self.variance_sum = 0
|
||||
|
||||
def set_config(self, config):
|
||||
self.config_ = config
|
||||
self.config_dict_ = json.loads(self.config_)
|
||||
self.variance_number_ = self.config_dict_["VARIANCE_NUMBER"]
|
||||
|
||||
def config(self):
|
||||
return self.config_
|
||||
|
||||
def eval(self, value):
|
||||
self.present_number_ = len(self.window_1_)
|
||||
if self.present_number_ < self.variance_number_:
|
||||
self.window_1_.append(value)
|
||||
self.sum = 0
|
||||
for i in self.window_1_:
|
||||
self.sum = self.sum + i
|
||||
self.average = self.sum / len(self.window_1_)
|
||||
self.variance_sum = 0
|
||||
for i in self.window_1_:
|
||||
self.variance_sum = self.variance_sum + (i-self.average)*(i-self.average)
|
||||
self.variance = self.variance_sum / len(self.window_1_)
|
||||
return self.variance
|
||||
else:
|
||||
self.sum = 0
|
||||
del self.window_1_[0]
|
||||
self.window_1_.append(value)
|
||||
for i in self.window_1_:
|
||||
self.sum = self.sum + i
|
||||
self.average = self.sum / len(self.window_1_)
|
||||
self.variance_sum = 0
|
||||
for i in self.window_1_:
|
||||
self.variance_sum = self.variance_sum + (i-self.average)*(i-self.average)
|
||||
self.variance = self.variance_sum / len(self.window_1_)
|
||||
return self.variance
|
||||
|
||||
31
variance_test_csv.py
Normal file
31
variance_test_csv.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import pandas as pd
|
||||
from variance import variance
|
||||
import ray
|
||||
|
||||
ray.init()
|
||||
|
||||
ray.RAY_DISABLE_MEMORY_MONITOR=1
|
||||
filepath = "D:/python_project_data/1.csv"
|
||||
origin_data = pd.read_csv(filepath)
|
||||
row_len = origin_data.shape[0]
|
||||
cow_len = origin_data.shape[1]
|
||||
variance_data = origin_data
|
||||
algorithm_variance = variance.remote()
|
||||
|
||||
cow_name = "G1.TTXD1_3"
|
||||
contrast_data = pd.DataFrame()
|
||||
contrast_data[cow_name+'_origin'] = origin_data[cow_name]
|
||||
algorithm_variance.set_config.remote('{"VARIANCE_NUMBER": 5 }')
|
||||
# algorithm_step.set_config('{"CYCLE_TIME_BASE": 5 }')
|
||||
for i in range(0,row_len):
|
||||
futures=algorithm_variance.eval.remote(origin_data.loc[i,cow_name])
|
||||
variance_data.loc[i, cow_name]=ray.get(futures)
|
||||
|
||||
print(variance_data.loc[:, cow_name])
|
||||
contrast_data[cow_name+'_variance'] = variance_data[cow_name]
|
||||
# average_data.to_csv("D:/python_project_data/1_disturb.csv", index=False)
|
||||
contrast_data.to_csv("D:/python_project_data/variance_data.csv", index=False)
|
||||
|
||||
|
||||
# 以下均为测试性能用
|
||||
# print(algorithm_step.config_)
|
||||
33
variance_x.py
Normal file
33
variance_x.py
Normal file
@@ -0,0 +1,33 @@
|
||||
from algorithm import algorithm
|
||||
import json
|
||||
import ray
|
||||
|
||||
# @ray.remote
|
||||
@ray.remote
|
||||
class variance_x(algorithm):
|
||||
def __init__(self):
|
||||
self.config_dict_ = None
|
||||
self.config_ = None
|
||||
self.window_length_ = 10
|
||||
self.avg_ = 0
|
||||
self.var_ = 0
|
||||
|
||||
def set_config(self, config):
|
||||
self.config_ = config
|
||||
self.config_dict_ = json.loads(self.config_)
|
||||
self.window_length_ = self.config_dict_["WINDOW_LENGTH"]
|
||||
self.init_flag_ = False
|
||||
|
||||
def config(self):
|
||||
return self.config_
|
||||
|
||||
def eval(self, value):
|
||||
if self.init_flag_ == False:
|
||||
self.init_flag_ = True
|
||||
self.avg_ = value
|
||||
self.var_ = 0
|
||||
else:
|
||||
present_avg_ = self.avg_ * (self.window_length_ - 1)/self.window_length_ + value / self.window_length_
|
||||
self.var_ = (self.window_length_ - 1)/self.window_length_ * self.var_ + (self.window_length_ - 1) / (self.window_length_ ** 2) * ((value - self.avg_)**2)
|
||||
self.avg_ = present_avg_
|
||||
return self.var_
|
||||
31
variance_x_test_csv.py
Normal file
31
variance_x_test_csv.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import pandas as pd
|
||||
from variance_x import variance_x
|
||||
import ray
|
||||
|
||||
ray.init()
|
||||
|
||||
RAY_DISABLE_MEMORY_MONITOR=1
|
||||
filepath = "D:/python_project_data/1.csv"
|
||||
origin_data = pd.read_csv(filepath)
|
||||
row_len = origin_data.shape[0]
|
||||
cow_len = origin_data.shape[1]
|
||||
variance_data = origin_data
|
||||
algorithm_variance_x = variance_x.remote()
|
||||
|
||||
cow_name = "G1.TTXD1_3"
|
||||
contrast_data = pd.DataFrame()
|
||||
contrast_data[cow_name+'_origin'] = origin_data[cow_name]
|
||||
algorithm_variance_x.set_config.remote('{"WINDOW_LENGTH": 5 }')
|
||||
# algorithm_step.set_config('{"CYCLE_TIME_BASE": 5 }')
|
||||
for i in range(0,row_len):
|
||||
futures=algorithm_variance_x.eval.remote(origin_data.loc[i,cow_name])
|
||||
variance_data.loc[i, cow_name]=ray.get(futures)
|
||||
|
||||
print(variance_data.loc[:, cow_name])
|
||||
contrast_data[cow_name+'_variance_x'] = variance_data[cow_name]
|
||||
# average_data.to_csv("D:/python_project_data/1_disturb.csv", index=False)
|
||||
contrast_data.to_csv("D:/python_project_data/variance_data_x.csv", index=False)
|
||||
|
||||
ray.shutdown()
|
||||
# 以下均为测试性能用
|
||||
# print(algorithm_step.config_)
|
||||
Reference in New Issue
Block a user