diff --git a/average.py b/average.py index c9b33d4..9954066 100644 --- a/average.py +++ b/average.py @@ -26,12 +26,16 @@ class average(algorithm): self.present_number_ = len(self.window_1_) if self.present_number_ < self.average_number_: self.window_1_.append(value) - return - else: self.sum = 0 for i in self.window_1_: self.sum = self.sum + i self.average = self.sum / len(self.window_1_) + return self.average + else: + self.sum = 0 del self.window_1_[0] self.window_1_.append(value) + for i in self.window_1_: + self.sum = self.sum + i + self.average = self.sum / len(self.window_1_) return self.average diff --git a/average_test_csv.py b/average_test_csv.py index c922074..6b4f106 100644 --- a/average_test_csv.py +++ b/average_test_csv.py @@ -3,6 +3,8 @@ from average import average import ray ray.init() + +ray.RAY_DISABLE_MEMORY_MONITOR=1 filepath = "D:/python_project_data/1.csv" origin_data = pd.read_csv(filepath) row_len = origin_data.shape[0] @@ -17,9 +19,9 @@ algorithm_average.set_config.remote('{"AVERAGE_NUMBER": 5 }') # algorithm_step.set_config('{"CYCLE_TIME_BASE": 5 }') for i in range(0,row_len): futures=algorithm_average.eval.remote(origin_data.loc[i,cow_name]) - average_data.loc[i,cow_name]=ray.get(futures) + average_data.loc[i, cow_name]=ray.get(futures) -print(average_data.loc[:,cow_name]) +print(average_data.loc[:, cow_name]) contrast_data[cow_name+'_average'] = average_data[cow_name] # average_data.to_csv("D:/python_project_data/1_disturb.csv", index=False) contrast_data.to_csv("D:/python_project_data/average_data.csv", index=False)